第20节(第2/2 页)
题转化成学过的问题。
于是牛顿想了一个很聪明的办法:
取一个”很短”的时间段△t,先算算t=2到t=2+△t这个时间段内,平均速度是多少。
v=s/t=(4△t+△t2)/△t=4+△t。
当△t越来越小,2+△t就越来越接近2,时间段就越来越窄。
△t越来越接近0时,那么平均速度就越来越接近瞬时速度。
如果△t小到了0,平均速度4+△t就变成了瞬时速度4。
当然了。
后来贝克莱发现了这个方法的一些逻辑问题,也就是△t到底是不是0。
如果是0,那么计算速度的时候怎么能用△t做分母呢?鲜为人……咳咳,小学生也知道0不能做除数。
到如果不是0,4+△t就永远变不成4,平均速度永远变不成瞬时速度。
按照现代微积分的观念,贝克莱是在质疑li△t→0是否等价于△t=0。
这个问题的本质实际上是在对初生微积分的一种拷问,用“无限细分”这种运动、模糊的词语来定义精准的数学,真的合适吗?
贝克莱由此引发的一系列讨论,便是赫赫有名的第二次数学危机。
甚至有些悲观党宣称数理大厦要坍塌了,我们的世界都是虚假的——然后这些货真的就跳楼了,在奥地利还留有他们的遗像,某个扑街钓鱼佬曾经有幸参观过一次,跟七个小矮人似的,也不知道是用来被人瞻仰还是鞭尸的。
这件事一直到要柯西和魏尔斯特拉斯两人的出现,才会彻底有了解释与定论,并且真正定义了后世很多同学挂的那棵树。
但那是后来的事情,在小牛的这个年代,新生数学的实用性是放在首位的,因此严格化就相对被忽略了。
这个时代的很多人都是一边利用数学工具做研究,一边用得出来的结果对工具进行改良优化。
偶尔还会出现一些倒霉蛋算着算着,忽然发现自己这辈子的研究其实错了的情况。
总而言之。
在如今这个时间点,小牛对于求导还是比较熟悉的,只不过还没有归纳出系统的理论而已。
徐云见状又写到:
对f(k+1)求导,可得f(k+1)&039;=ex-1+x/1!+x2/2!+x3/3!+……+xk/k!
由假设知f(k+1)&039;>0
那么当x=0时。
f(k+1)=e0-1-0/1!-0/2!--0/k+1!=1-1=0
所以当x>0时。
因为导数大于0,所以f(x)>f(0)=0
所以当n=k+1时f(k+1)=ex-[1+x/1!+x2/2!+x3/3!+……+x(k+1)/(k+1)]!(x>0)成立!
最后徐云写到:
综上所属,对任意的n有:
ex>1+x/1!+x2/2!+x3/3!+……+xn/n!(x>0)
论述完毕,徐云放下钢笔,看向小牛。
只见此时此刻。
这位后世物理学的祖师爷正瞪大着那一双牛眼,死死地盯着面前的这张草稿纸。
诚然。
以目前小牛的研究进度,还不太好理解切线与面积的真正内在含义。
但了解数学的人都知道,广义二项式定理其实就是复变函数的泰勒级数的特殊情形。
这个级数与二项式定理是兼容的,系数符号也是与组合符号兼容的。
所以二项式定理可以由自然数幂扩充至复数幂,组合定义也可以由自然数扩充至复数。
本章未完,点击下一页继续。