第20节(第1/2 页)
原本的时空他管不着也没能力去管,但在这个时间点里,徐云不会让杨辉三角与帕斯卡共享其名!
有牛老爷子做担保,杨辉三角就是杨辉三角。
一个只属于华夏的名词!
随后徐云心中呼出一口浊气,继续动笔在上面画了几条线:
“牛顿先生,您看,这个三角的两条斜边都是由数字1组成的,而其余的数都等于它肩上的两个数相加。
从图形上说明的任一数c(n,r),都等于它肩上的两数c(n-1,r-1)及c(n-1,r)之和。”
说着徐云在纸上写下了一个公式:
c(n,r)=c(n-1,r-1)+c(n-1,r)(n=1,2,3,···n)
以及……
(a+b)2=a2+2ab+b2
(a+b)3=a3+3a2b+3ab2+b3
(a+b)4=a4+4a3b+6a2b2+6ab3+b4
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
在徐云写到三次方那栏时,小牛的表情逐渐开始变得严肃。
而但徐云写到了六次方时,小牛已然坐立不住。
干脆站起身,抢过徐云的笔,自己写了起来:
(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+a6!
很明显。
杨辉三角第n行的数字有n项,数字和为2的n-1次幂,(a+b)的n次方的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项!
虽然这个展开式对于小牛来说毫无难度,甚至可以算是二项式展开的基础操作。
但是,这还是头一次有人如此直观的将开方数用图形给表达出来!
更关键的是,杨辉三角第n行的个数可表示为c(n-1,-1),即为从n-1个不同元素中取-1个元素的组合数。
这对于小牛正在进行的二项式后续推导,无疑是个巨大的助力!
但是……
小牛的眉头又逐渐皱了起来:
杨辉三角的出现可以说给他打开了一个新思路,但对于他现在所卡顿的问题,也就是(p+pq)/n的展开却并没有多大帮助。
因为杨辉三角涉及到的是系数问题,而小牛头疼的却是指数问题。
现在的小牛就像是一位骑行的老司机。
拐过一个山道时忽然发现前方百米过后一马平川,景色壮美,但面前十多米处却有一个巨大的落石堆挡路。
而就在小牛纠结之时,徐云又缓缓说了一句话:
“对了,牛顿先生,韩立爵士对于杨辉三角也有所研究。
后来他发现二项式的指数似乎并不一定需要是整数,分数甚至负数似乎也是可行的。”
“负数的论证方法他没有说明,但却留下了分数的论证方法。”
“他将其称为……”
“韩立展开!”
……
韩·数学鬼才·立
屋子里,徐云正在侃侃而谈:
“牛顿先生,韩立爵士计算发现,二项式定理中指数为分数时,可以用ex=1+x+x2/2!+x3/3!+……+xn/n!+……来计算。”
说着徐云拿起笔,在纸上写下了一行字:
当n=0时,ex>1。
“牛顿先生,这里是从x0开始的,用0作为讨论比较方便,您可以理解吧?”
小牛点了点头,示意自己明白。
随后徐云继续写道:
假设当n=k时结论成立,即ex>1+x/1!+x2/2!+x3/3!+……+xk/k!(x>0)
则ex-[1+x/1!+x2/2!+x3/3!+……+xk/k!]>0
那么当n=k+1时,令函数f(k+1)=ex-[1+x/1!+x2/2!+x3/3!+……+x(k+1)/(k+1)]!(x>0)
接着徐云在f(k+1)上画了个圈,问道:
“牛顿先生,您对导数有了解么?”
小牛继续点了点头,言简意赅的蹦出两个字:
“了解。”
学过数学的朋友应该都知道。
导数和积分是微积分最重要的组成部分,而导数又是微分积分的基础。
眼下已经时值1665年末,小牛对于导数的认知其实已经到了一个比较深奥的地步了。
在求导方面,小牛的介入点是瞬时速度。
速度=路程/时间,这是小学生都知道的公式,但瞬时速度怎么办?
比如说知道路程s=t2,那么t=2的时候,瞬时速度v是多少呢?
数学家的思维,就是将没学过的问